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' Department of Computer Engineering, Alzahra University, Tehran, Iran
*Technology Incubation Center of Alzahra University, Tehran, Iran

O Leveraging supervised learning methods is vital for predictive analysis of crime data, however,
because of the complex dependencies of crime behavioral variables, classifying behavioral crime
profiles is considered to be a demanding task. This paper presents two classifiers for matching
single-offender crimes of the type: Burglary from Dwelling Houses (BDH). The first classifier,
Multiclass MLP Crime Classifier (M2C?), leverages a multiclass topology to become capable of
matching nonprolific offenders in addition to prolific offenders. This method will be useful for
matching crimes to several local offenders in a particular district, and it is not suitable for classi-
fying a large number of offenders. Contrarily, the second method, Ensemble Neural Network Crime
Classifier (EN°C?), focuses on automating decision-making processes for crime matching through
exploiting expert classifiers” outpuls in a bagging ensemble approach. As demonstrated by evalua-
tive experiments, M?C? is an efficient approach for classifying small numbers of nonprolific and
prolific offenders. The proposed method’s performance was proved when compared with other
common machine learning techniques.

INTRODUCTION

The paper focuses mainly on utilizing classification techniques for
single-offender Burglary from Dwelling Houses (BDH) crime matching.
The BDH type was chosen because of its significant influence on society
as an important volume crime. The research uses artificial neural network
classifiers because of their acceptable classification accuracy and also their
noise-tolerance capability in this domain. However, during the study,
diverse machine learning classification methods were applied to the
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domain and also were compared to each other. Utilizing data mining
techniques (especially neural networks) for crime matching is considered
a new area of research and there are a relatively few valid publications
about this topic.

Related Work

Recently, intelligent investigation of burglaries, thefts, and robberies
has been tackled from several aspects, such as case-based reasoning (Ribaux
and Margot 1999), computer simulation (Furtado et al. 2009), artificial
intelligence and machine learning (Oatley, Ewart, and Zeleznikow 2006),
and time series forecasting (Deadman 2003; Cohen and Gorr 2005).
Ribaux and Margot (1999) introduced a general inference framework for
investigative crime analysis based on case-based reasoning applied to bur-
glary crime data. They proposed five general inference structures, which
cover different crime matching scenarios.

Crime forecasting techniques have also been applied to the burglary
crime domain. Fundamentals of crime forecasting can be found in a techni-
cal report from a practical project with a U.S. National Institute of Justice’s
grant (Cohen and Gorr 2005). Techniques for residential burglary crime
forecasting are discussed in Deadman (2003) and Liu and Brown (2003).

Furtado and colleagues have proposed a multiagent-based simulation
approach to understanding the behavior of criminals involved in crimes
against property by using ant colony optimization and genetic algorithm
(Furtado et al. 2009). They have presented a model for simulating real-
world entities, including offenders, police patrol teams, and targets (public
places). They have also simulated a criminal’s learning ability.

A general BDH crime matching framework was proposed in
(Keyvanpour, Javideh, and Ebrahimi 2011), which utilized data mining
techniques to cover different crime matching scenarios. The OVER project
(Oatley et al. 2006) and also Adderley’s practical PhD thesis (Adderley
2007) may be considered to be the most prominent examples of using
machine learning and artificial intelligence techniques in the BDH domain
over the past decade. Oatley et al., the researchers in the OVER project,
have assessed Al techniques including logic programming and case-based
reasoning using similarity metrics such as knearest neighbor, Cosine Rule,
and Tversky’s Contrast model for matching single BDH crimes. As the
authors in the OVER project have mentioned, KNN and Cosine Rule are
not suitable for expressing similarities among crime behavioral patterns
because they are geometric representations of similarity. The authors
confirmed that none of the proposed mentioned approaches are robust
predictive methods for crime matching.
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Finally, in 2007, Adderley applied supervised and unsupervised neural
networks for offender profiling in his PhD thesis (Adderley 2007). He used
the multi-layer perceptron (MLP) for matching BDH instances with single
prolific offenders and the self-organizing map (SOM) architecture for
identifying distraction burglaries and sexual offences.

Contribution of the Article

Apart from Adderley’s method, no robust and accurate supervised
neural network model has been proposed for BDH crime matching. In this
article, we provide a practical, intelligent investigation approach to burglary
crime matching from a hybrid view of machine learning and data mining
perspective. This approach focuses on different ways of using supervised
neural network for BDH crime matching. Different types of classifiers were
tested against a real BDH dataset and the results were evaluated. We also
aim to improve the supervised method proposed in Adderley’s thesis and
eliminate its drawbacks through introducing two models named Multiclass
MLP Crime Classifier (M2C?) and Ensemble Neural Network Crime Classi-
fier (EN2C2). The former is proposed to eliminate a restriction in Adder-
ley’s structure that it is suitable only for prolific offenders, and the latter
aims to provide a decision-making mechanism on identifying the most
deserving offenders by leveraging an ensemble learning approach, an
important feature that Adderley’s method lacks. We used neural networks
in both of these models because of their outstanding abilities with regard
to noise-tolerance and desirable classification accuracy (Dreyfus 2005).

The organization of this article has been inspired by the main processes
of the cross industry standard process for data mining (CRISP-DM) method-
ology (Shearer 2000), which is widely used in data mining. Consequently, dif-
ferent aspects of business understanding are described in the following
section. Data understanding and data preparation are proposed in “Data
Understanding and Preparation.” Model building and proposed methods
are dissected in “Proposed Classifier Models.” Evaluation issues are discussed
in the “Experimental Results.”

BUSINESS UNDERSTANDING

The goal of crime matching in law enforcement agencies is to assign the
proper crime to the proper offender and/or vice versa. As Burgess et al.
(2007) stated, “The first possible benefit of a classification system would
be in aiding the apprehension of the offender through behavioral investi-
gative profiling. ”During this work, the authors studied the business process
of solving BDH crimes currently used by investigators in the capital city of
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FIGURE 1 Intelligent crime matching schema.

Iran. Subsequently, an intelligent version of this process was proposed that
embeds BDH classifier systems in two stages of the process.

The proposed business flow of the crime matching process is demon-
strated in Figure 1. Dark callout symbols illustrate the stages where a
BDH classifier can be utilized in this process. As can be seen in the figure,
the process is started when (1) a new unsolved burglary instance is reported
(occurrence mode), or (2) a specific burglar is apprehended (apprehen-
sion mode). In the first mode, a classifier helps to assign several probable
recorded offenders to the burglary instance, and in the second mode the
classifier participates to estimate the most probable instances that the
burglar could have done. Through the following sections, we will describe
how supervised neural network classifiers can be used for aiding the two
above-mentioned tasks. Adderley’s has covered a special case of the second
mode by his proposed MLP neural network (the model is special because it
can handle only prolific offenders). We first propose a supervised method
named M*C? for eliminating a restriction of his method. Then we propose
another supervised method (EN?C?) to cover the first mode.

DATA UNDERSTANDING AND PREPARATION

There were 160 real BDH cases involved in this work. Real cases of BDH
crime were collected from two Operating Command Units (OCUs) in Iran.
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The data were extracted from real textual police narrative reports and
transformed into a binary modus operandi (MO) format (see Keyvanpour,
Javideh, and Ebrahimi [2011] for a detailed discussion on the binary
encoding process of BDH crimes). Finally, extracted crime features were
manipulated through consulting two BDH experts.

As another data preparation activity, all of the categorical data types
were transformed into binominal fields using binary set encoding. This
kind of transformation is a common preprocessing task for building
MOtables representing offenders’ behaviors (Adderley 2007; Oatley, Ewart,

TABLE 1 Structure of the Sample Data

Offender Number of

Case type no. burglaries Dominant behavioral pattern
Ordinary of #1 22 EntryLocation: “terrace”; EntryMethod: “smash”; Building
Cases Type: “apartment”; Instrument: “lever”; StolenProps:
(majority) “smalljewelry”
of #2 5 Building Type: “bungalow”; ExitLocation: “same as entry”;
ReagonSpec: “rich”
of #3 28 EntryLocation: “window”; EntryMethod: “cut”; Building Type:

“bungalow”; Exitl.ocation: “same as entry”; StolenProps:
“small- jewelry”

of #4 26 EntryLocation: “Main door”; EntryMethod: “smash”; Building
Type: “apartment”; Instrument: “lever”;Exitl.ocation: “same
as entry”

of #5 3 Building Type: “apartment”; SearchType: “untidy”;

StolenProps: “only jewelry”; ReagonSpec: “rich”;
Instrument: “lever”

of #6 6 EntryLocation: “terrace”; EntryMethod: “neighbor houses”;
Building Type: “apartment”; SearchType: “untidy”;
ReagonSpec: “rich”

of #7 15 EntryLocation: “terrace”; OccurrenceTime: “around
midnight”; Building Type: “apartment”; ReagonSpec:
“rich”

of #8 20 SearchType: “tidy”; OccurrenceTime: “before noon”;

Building Type: “apartment”; StolenProps: “big”;
ReagonSpec: “rich”

of #9 5 EntryLocation: “wall”; Building Type: “flat”; StolenProps:
“small- jewelry”
of #10 14 EntryLocation: “wall”; Building Type: “apartment”;

OccurrenceDay: “weekend”; OccurrenceTime: “around
midnight”; StolenProps: “smalljewelry”; ReagonSpec: ”

rich”
Challenging  of #11 5 Building Type: “bungalow”; ReagonSpec: “rich”
Cases of #12 6 EntryMethod: “Bogus”; Building Type: “apartment”;
StolenProps: “only jewelry”
of #13 3 Building Type: “bungalow”; StolenProps: “only jewelry”;
ReagonSpec: “rich”
of #14 2 EntryLocation: “wall”; OccurrenceTime: “around midnight”

Total 14 160 -
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and Zeleznikow 2006). This transformation was done because there are
rather few classifiers capable of directly handling categorical data in the
literature for machine learning and data mining compared with that exist-
ing for dealing with non categorical data. Also, it was admitted that investi-
gators feel more comfortable with yes/no questions when making their
related reports. 187 binary features were constructed this way. The encoded
binary data contained information about a burglar’s behavior at the crime
scene, his or her method of committing the burglary, victimized building
specifications, and so on.

In the initial feature selection step, all of the features with variance 0
were removed from the dataset. Also, less-important features were ident-
ified and omitted through consulting a domain expert. Finally, 94 features
remained to be involved in the model-building phase. In order to examine
the noise-tolerance capability of the model, 16 noisy cases were added to
the dataset, mentioned as challenging cases in Table 1.

These cases include three types of data: (1) Nonprolific offenders who
had a small number of ordinary offences; in fact, they had not committed
more than six instances and their crime instances had not included any
particular MO pattern that could be distinguished from the other offen-
ders’ patterns. (2) Some intentionally added noisy data; these noisy data
were designed to mimic the data entry errors a human agent makes when
entering the crime behavioral information into the system. (3) Crime
instances including a high rate of missing values; the rationale behind add-
ing challenging cases was to urge the model to face with instances that are
not easy to classify. As can be seen in Table 1, there are 160 BDH instances
committed by 14 single offenders, each one has committed from 2 to 28
cases. The last column in the table contains the main crime patterns for
each offender. These patterns were estimated through consulting a domain
expert to provide a preliminary insight into data.

CASTING BDH CRIME MATCHING PROBLEM TO SUPERVISED
ANN CLASSIFICATION: ADDERLEY’S METHOD

The general crime matching problem was discussed in the “Business
Understanding” section. The crime matching problem is equivalent to a
classification or clustering problem from the machine learning point of
view. Because we aim to address supervised learning methods in this article,
we will focus on the classification problem. Thorough overviews on the
BDH crime matching concept have been presented in (Ribaux and Margot
1999). Presently, the naive supervised MLP proposed by Adderley is con-
sidered the latest approach of using ANNs for supervised crime matching.
Accordingly, in this section, we deliberate on Adderley’s method of using
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neural networks for burglary crime matching. Different proposed classi-
fiers’ architectures are dissected in the following sections.

Dissecting the Method

Adderley proposed an elegant approach for assigning new unsolved
BDH instances to prolific offenders in his PhD thesis. He used 22
binary-encoded MO variables (Keyvanpour, Javideh, and Ebrahimi 2011)
in the network’s input layer and a single neuron representing the network’s
yes or no answer as the output layer. As it can be seen in Figure 2, using this
neural network topology, the input layer should have as many neurons as
extracted MO features and the output layer should have just one neuron.
Also, the real output value should be interpreted as a binary value. Using
this model, when a new unsolved crime occurs, it should be passed to each
of the trained prolific offender’s network to be assessed with regard
towhether it can be attributed to that offender. This model suffers from
the three following drawbacks:

1. In Adderley’s model, in order to obtain at least 50% of accuracy, each
offender’s network should be provided with at least 35 solved BDH train-
ing instances of a particular offender. Because the approach needs a sig-
nificant number of training instances (all related to a particular burglar)
to be trained, it will apply only to prolific offenders. Foley’s rule (Priddy
and Keller 2005) implies that if the ratio of inequality (1) is satisfied, the
resultant error of the classifier will be close to that of Bayes optimal
classifier.

> 3, (1)

L
P1 — M‘\

Po4 | ) /

Q- o
input layer with 94  first hidden second hidden  outputlayer
neurons layer layer with 1 neuron

FIGURE 2 Trained MLP neural network for a prolific burglar.
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where 7n(S) is the number of training samples per class and n(F) is the
number of features (22 in Adderley’s approach). So, the optimal size
training set required for n(Of) offenders in this model can be calculated
by the following formula:

1(Supain) > 3n(F) x n(C) x n(Of), (2)

where n(C) is the number of classes (one yes class and one no class in
this model). It means that, in order to have an ideal classifier for a spe-
cific offender, the model should be provided with at least 3 x 22 x 2
solved crimes attributed to a specific offender in the training phase,
which requires the offender to be prolific. The general neural network
architecture presented in “Dataset Issues” reduces the number of opti-
mal training sets to alleviate this deficiency.

2. This model cannot be generalized for use in the second mode (see
“Business Understanding”). No systematic approach has been proposed
to help decide which offender’s network output is more reliable than
that of the others. Generating only a list of confidence values produced
by each offender’s network is not satisfactory. For example, a situation
corresponding networks for offender X and offender Y produces confi-
dence values 0.71 and 0.74, respectively; simply choosing the offender Y
because of its maximum confidence value does not seem a wise decision.
In such a situation, both of the networks are not so confident and it is
also possible that the offender X might be the correct offender. Because
the decision may affect someone’s freedom, it is worthwhile to exploit an
ensemble mechanism to enrich the quality of decision making. An
ensemble approach to alleviate this deficiency has been proposed in
the next section.

3. It seems that using just 22 crime variables as input features is not suf-
ficient to provide the best discriminative power. This has been proved
in the practical OVER project, which has utilized over 120 crime features
(Oatley, Ewart, and Zeleznikow 2006). We extracted 94 input features to
eliminate this drawback. This claim will be proved in the evaluation of
the experiments in “Experimental Results.”

We applied the architecture of MLP neural network proposed by Adderley
(Adderley 2007) against our work’s dataset for BDH supervised crime match-
ing (Figure 2). We used the following step function as the activity function of
the last neuron to perform a simple Boolean interpretation:

0 netoutput—layer < u

f(net®"Pver) = { 1 netovtputiaver > 7 7
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where p is a threshold parameter with a positive value less than 1. The output
layer’s input is net”*"™"**" which comes from the last hidden layer and also
is scaled between 0 and 1 using a min-max normalization function (Equation
(4)). It is important that this value can be interpreted as a measure for con-
fidence. If the value is near 0.5, it can be induced that we cannot rely on the
network’s answer. (e.g., if the output layer produces value 0.55). We use this
value as the confidence measure of classifier response and name it CV for the

remainder of this paper. CV can be calculated by the following equation:

n
_lav . last—hidden—I;
CV = netvput—laer — Mlﬂ_MZlX( g w; X net; " ayer), (4)
i1

where 7 is the number of neurons resident in last hidden layer, Wi is the cor-
responding weight between ith neuron of the last hidden layer and the out-
put layer. The net input of the ith neuron in the last hidden layer is
ne tiast—hiddcn—layer )

It is worthwhile to note that tuning the threshold parameter p can
affect the false positive and false negative rate of the classifier. Roughly sta-
ted, increasing this value may result in a lower false positive rate and vice
versa. Presenting an optimal value for this parameter would require
another major study, so we will leave the issue by simply using ©=0.5 in
our work. The remainder of this paper has been dedicated to discussing
the proposed methods of BDH crime classification and also to presenting
the experimental results.

PROPOSED CLASSIFIER MODELS

To alleviate the two drawbacks mentioned in “Dissecting the Method”,
two different crime classifiers are introduced in this section. The first classi-
fier exploits multiclass neural network architecture to cover nonprolific
offenders in addition to prolific offenders. The method aims to reduce the
number of required training samples by half. This way, the classifier might
be capable of matching both prolific and nonprolific offenders with their
related crime instances. For the sake of simplicity, we refer to this method
as M*C” (Multiclass MLP Crime Classifier). It is important to note that using
a multiclass topology may increase the model’s training time (Priddy and Kel-
ler 2005), but it will be useful when we are dealing with several nonprolific
burglars who are primarily active in a specific geographic area. We will dissect
the classification accuracy issues in “Experimental Results.”

The second proposed classifier, which is preferred by the authors, is an
ensemble classifier addressed as EN*C? (Ensemble Neural Network Crime
Classifier) through the remainder of the article. EN?C? aims to present a
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general remedy for the second drawback mentioned previously. That is, it
will present a decision regarding which offender is preferred to be attribu-
ted to a crime instance when there are more than one offender with almost
the same confidence value (CV).

M?2C?: Multiclass MLP Crime Classifier

A practical approach for learning the patterns among solved crime
instances is to design the ANN topology to have as many neurons as the
total number of offenders in the output layer. We used a softmax activity
function in the output layer of this topology:

net

_ %
n=14
net
2. ¢
J=1

f(neti) = ) (5)

where, net; (net;) is the last hidden layer output for ith (jth) output neu-
ron, n=14 is the number of output neurons (number of offenders in
our dataset) in this topology. Utilizing softmax function as the output
layer’s activity function ensures that all of the output values will be between
0 and 1, and also their sum will be 1. This way, we were able to interpret the
output values and also rank the predicted offenders according to their cor-
responding confidence values. Accordingly, the confidence value for assign-
ing crime instance P=(pi, po,...,pos) to ith offender is given by
Equation(6).

output—layer) ) (6)

i

CV; = softmax(net

Figure 3 illustrates our general multiclass topology for classifying solved
crime instances.

input layer with 94 first hidden second hidden output layer
neurons layer layer with 14 neurons

FIGURE 3 Multiclass network topology for crime matching.
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In comparison with the topology that was discussed in “Data
Understanding and Preparation,” in this method the number of classes
(n(c)) has been reduced by half, so according to inequality (2), the model
can be trained optimally using smaller training datasets. As already men-
tioned, although in comparison with previous topology, this approach
may result in increase of training time; it is capable of covering nonprolific
local offenders who usually commit most of their crimes in particular areas.
So it can be exploited by the OCUs for matching burglaries occurred in a
specific district. This way, the network finds the opportunity to learn the
behavioral patterns of nonprolific offenders in comparison with that of
other offenders. Thus, it is important to note that M*C? is not applicable
for classifying large numbers of offenders because its topology does not
allow having too many neurons in the output layer. EN®C?which will be
proposed in the next section, can also eliminate this deficiency.

EN?C?: Ensemble Neural Network Crime Classifiers

This section is dedicated to presenting an ensemble learning approach
for eliminating the deficiency of lacking a decision-making mechanism for
preferring a reliable offender’s network over other reliable networks. The
key idea to using an ensemble approach in this domain is the fact that
exploiting multiple highly trained classifiers that have learned the style
(pattern) of one offender can perform better than a single classifier that
has partially learned the patterns of all offenders. Figure 4 depicts the

P1

Expert Answer

Expert Module for Offender 1 Confidence value

offender 1

-
-
P1 a2
=T
Expert Answer =39
P2 % (g 3
Expert Module for Offender 2 Confidence value 3 .
o
o =
Sr
22
S o
w .
3
'

Expert Answer

Expert Module for Offender n

Confidence value

FIGURE 4 General schema of a modular crime classifier.
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general schema for a modular crime classifier. As the figure shows, the
entire classifier is composed of several expert classifiers, each of them
trained for a specific offender. Each expert delivers its output to a super-
visor layer, which is responsible for weighing the outputs of experts accord-
ing to their delivered confidence values. This layer may also be responsible
for selecting the more confident classifier and identifying it as the final
output of the ensemble. EN®C® generally utilizes bootstrap aggregation,
commonly referred as the bagging (Duda, Hart, and Stork 2001) technique
of machine learning. As the name suggests, the model assembles several
binary crime classifiers, which are known as experts. In fact, each binary
classifier is expert in identifying its own offender’s pattern. This approach
can work well if the component classifiers are experts in separate regions of
the input space (Duda, Hart, and Stork 2001).

The main architecture of EN*C* (Figure 5) consists of two layers: (1)
the expert layer and (2) the supervisor layer. The first layer contains binary
classifiers of each offender and the second is a multiclass MLP network.
Upon their classification accuracy, MLP neural networks were chosen as
the expert classifiers of EN*C? (see “Experimental Results”). Training the
first layer can be accomplished in parallel whereas training the second layer
must be done after the first. As can be seen in Figure 5, the binary output of
each expert (yes/no) in addition to expert’s level of confidence (CV) will
be delivered to a supervisor MLP neural network. This supervisor network
is trained to identify the correct offender based on received information
from expert classifiers. In fact, the supervisor network weighs each binary
classifier according to its corresponding binary answer and also the related

Expert Module for Offender 1
(binary classifier)

P e
Supervisor Layer
it d (28:9:14)

oOf——
- cvi N
ﬂp_ O - final CV for

offender 1

Expert Module for Offender 2
(binary classifier)

JBL it
- \
—_—
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P94 o2 >
e

Expert Module for Offender 14
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FIGURE 5 The architecture of EN*C2.
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value of CV (see Equation (4) for calculation of CV). Eventually, according
to the supervisor network’s output, a selector component (which is simply a
max-picker) decides on the offender to propose for the input crime
instance. The supervisor network must have 14 x 2 neurons in the input
layer, 14 neurons (number of offenders in the dataset) in the output layer.
After testing the accuracy of different network structures, finally we
designed this network with one hidden layer containing nine neurons.

In the EN*C? framework, all of the activity functions used in non-output
layers in both expert classifiers and supervisor layer were the popular sig-
moid nonlinear function, which is given by the following equation for
the ith unit in a layer:

1

f(net;) = e e (7)
For the output layers in expert classifiers, step function of Equation (3) was
used and finally, for the output layer of the supervisor network, softmax
function of Equation (5) was used. It is important to note that, using the
softmax function ensures the output values of the supervisor layer lie
between 0 and 1. So the Equation (8), which is considered a principle in
the bagging technique always holds:

_XC: w(Cvi) =1, (8)

where cis the number of expert classifiers, which is equal to the number of
offenders, and W(CVy) is the output of ith neuron in the output layer of the
supervisor layer. In the other words, W(CV,) is considered to be the modi-
fied confidence value for ith expert classifier. This value has been repre-
sented as final CV for offender ¢ in Figure 5.

EXPERIMENTAL RESULTS

In this section we have evaluated the performance of M?C? and EN*C?.
Also, we have compared several common classifiers that have been applied
on the problem domain.

Dataset Issues

Unfortunately, for security issues, there is not a standard common data-
set for the crime matching domain. Consequently, it is almost impossible
for the researchers across different countries to access each others’
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datasets. So most of the researchers usually leverage a systematic method of
data collection and build their own real datasets with the help of their
countries’ law enforcement agencies. The structure of the sample data
set used in this study was discussed in “Data Understanding and Prep-
aration.” We intentionally collected the dataset records to include both
prolific and nonprolific offenders. Thus, about 36% of the records are
related to offenders with fewer than 5 crimes. As did Adderley and Oatley,
Ewart, and Zeleznikow, we used a systematic approach for collecting
required data from real BDH cases of two OCUs and, subsequently, we built
our work’s dataset after performing an initial preprocessing task. As men-
tioned, for the evaluation purposes we designed the dataset to include
offences of both prolific and nonprolific burglars.

Evaluation Method

Because a BDH classifier can affect a person’s freedom, classification
accuracy has been used as the most important performance measure of
BDH crime classification in (Adderley, 2007; Oatley, Ewart, and Zeleznikow
2006). Training time and robustness are other classification performance
measures. Because designing classifiers in the domain of crime matching
usually considers peoples’ freedom, training time does not play a decisive
role and even a few days of training might be acceptable in this domain.
Contrarily, robustness of the classifier is an important issue, because the sys-
tem might be used with different numbers of crimes representing diverse
distributions of BDH incidents in each OCU'’s district.

We assessed the classification accuracy, as our performance measure, by
leveraging a 5-fold cross-validation technique (see Kohavi [1995]). Using
this technique helps us to evaluate the robustness of the classifier and also
to avoid network overfitting. Each fold contained 32 systematically sampled
crime instances with no overlap.

Experiment 1: Evaluating M?C?

In order to evaluate the performance of M*C?, we assessed the classifi-
cation accuracy of the model separately in each cross-validation fold. The
classification accuracy of each fold in addition to misclassified instances
is shown in Table 2. The average of classification accuracy is about 92.5%
in this method. We also assessed the confidence value of the classifier for
each fold. Figure 6 depicts the level of confidence (vertical axis) for each
crime instance (horizontal axis) in each fold. As already mentioned, confi-
dence value is a real number between 0 and 1. As the figure shows, all of the
five folds have at least the confidence value of 90%.
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TABLE 2 Classification Accuracy of M2C?

Fold No. Accuracy (%) ID of misclassified instances
1 93.7 12768,12773

2 93.7 12772,12671

3 96.9 12759

4 90.6 12770,12753,12748

5 87.5 12752,12737,12658,12634

It can be also observed that fold number 5 has the lowest rate of the
confidence level compared with the other cross-validation folds. This fold
also has the lowest classification accuracy as seen in Table 2. This reveals
the fact that when the network is not confident enough, it may not provide
good classification accuracy. In contrast, the smooth shape of fold numberl
can be attributed to its high percentage of the instances that are related to
prolific offenders with distinct behavioral patterns. So it is relatively easy for
the classifier to accurately identify these crime instances (accuracy of 93.7%
and confidence value of 98%).

Results of the experiment revealed that although it is also hard for
M?C? to classify nonprolific offenders, it presents acceptable outcomes
(at least 87.5% accuracy and 90% confidence value).

Experiment 2: Evaluating EN?C?

We evaluated the classification accuracy of EN2C? by the same five folds
that we used for evaluating M>C? through the 5-fold cross-validation

Confidence Value - fold No.1 Confidence Value - fold No.2 . Confidence Value - fold No.3
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FIGURE 6 Confidence analysis of M2C? (5-folds cross-validation).
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TABLE 3 Classification Accuracy of EN?C?

Fold no. Accuracy (%) ID of misclassified instances

1 93.7 12672,12773

2 81.2 12671,12725,12750,12760,12767,12772
3 84.3 12771,12759,12709,12684,12665

4 96.9 12659

5 100 -

process. The accuracy related to each fold and also misclassified instances
has been shown in Table 3. Surprisingly, the experiment reports the aver-
aged classification accuracy of 91.2% with this method, which is a value near
to the accuracy of M*C* method. Regarding the relatively low training qual-
ity of expert modules of nonprolific offenders, it was expected that EN*C?
would provide a lower accuracy than M*C®. However, it turned out that
EN”C? may also perform acceptably for even nonprolific offenders, and
its overall performance is close to that of M*C?,

By comparing Tables 2 and 3, it can be inferred that M°C* has per-
formed better in folds 2 and 8, but EN®C? has performed better in folds
4 and 5. Also, both approaches have performed equally in fold 1. The
results of confidence analysis are shown in Figure 7. According to the fig-
ure, folds 2 and 3 have the lowest confidence level and they have the lowest
level of accuracy, too (Table 3). As we saw for MZ2C?, the evaluation results
again endorse the hypothesis that the network will not provide good classi-
fication accuracy if it is not confident enough. It was also admitted that the
average of confidence levels of EN2C? (91.2%) was also near to that of M?C?
(92.1%).

Confidence Value- Fold No. 1 Confidence Value- Fold No. 2 Confidence Value- Fold No. 3
FESFEFP TSI FFIF LSS FIFFESS TP FIIFIyIII eIy Iaayasys Pl " " r’° S
Confidence Value- Fold No. 4 Conﬂdence Vulue FDH Ne 5
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FIGURE 7 Confidence analysis of EN?C? (5-folds cross-validation).
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Experiment 3: Comparative Evaluation

As a comparative evaluation, we have explored the accuracy of the
proposed methods of crime classification in comparison with common
methods recently applied by researchers on crime matching and prediction
domain. These common methods include MLP networks (Adderley 2007),
radial basis function networks (RBFNs) (Ly, Ji, and Zhang 2008), inductive
algorithms such as decision trees (C5.0 and CART; Oatley, Ewart, and
Zeleznikow 2006), Bayesian belief nets (Oatley, Ewart, and Zeleznikow
2006), and support vector machine (SVM). Their level of accuracy has been
assessed in a comparative approach (Figure 8).

The bar chart in Figure 8 illustrates the accuracy of first to fifth
cross-validation fold, respectively from left to right, in addition to the aver-
aged accuracy for each algorithm. The chart reveals that both M*C? and
EN®C? provide the highest rates of accuracy with 92.5% and 91.2%, respect-
ively. This shows that the proposed models perform accurately in compari-
son to the other common machine learning methods. As the results show,
C5.0 and RBF network are the second most accurate (87.5%). Also, it can
be claimed that SVMs cannot provide acceptable accuracy in this domain
of application.

In this part of the article, it’s worthwhile to mention a fact about
Bayesian network classifiers, which we encountered in evaluative experi-
ments. Although Bayesian networks did not offer the best accuracy in this
study, they bring a significant benefit into the crime matching domain that
other powerful classifiers do not. The benefit of this method has been illu-
strated in Figure 9. In this case, for the purpose of illustration, three offen-
ders (#4, #7, and #9) were selected with 26, 15, and 5 attributed crimes,
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FIGURE 8 Confidence analysis of EN?C? (5-folds cross-validation). (Color figure available online.)
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FIGURE 9 TAN Bayesian networks trained to predict the guiltiness of a specific offender.

respectively. Offender #4 is considered to be an instance of prolific bur-
glars and offender #9 may be considered a nonprolific offender. As the fig-
ure depicts, this kind of classifier is considered as a graphical tool that is
able to illustrate the behavioral signature of the criminal in a comprehen-
sible manner. This graphical model may provide a deep insight into the
data for police investigators. We used a tree-augmented naive Bayes
(TAN) structure (see Friedman, Geiger, and Goldszmidt [1997]) which
preserves the dependencies among predictors as a tree structure.

After feature selection, four predictors (i.e., independent crime
variables) were used as the Bayesian network’s inputs.

Comparative Evaluation of Experts Layer in EN°C®

In order to evaluate the performance of expert modules, which we used
in the expert layer of EN®C?, we compared different common models of
binary classifiers. We applied diverse binary classifiers against all of the
offenders in the dataset. As noted earlier, ENZ?C? uses MLP networks as
its component classifiers in the experts layer (see Figure 5).

Table 4 shows the experiment’s results for different structures of these
component classifiers. As can be seen in the table, each binary classifier has
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been able to deal with its own related offender accurately. RBF networks
and 2-hidden-layer MLPs outperformed the other binary classifiers. Addi-
tionally, it can be seen that 2-hidden-layer MLPs are able to predict a spe-
cific offender’s crimes accurately using fewer numbers of neurons than
RBFNs. To be provided with a high rate of accuracy is the main essence
of using an expert classifier in an ensemble approach and justifies choosing
ANN classifiers in the expert layer of EN*C. Surprisingly, the results of the
experiment in Table 3 reveal that EN*C? is also capable of classifying
nonprolific offenders’ crimes although we developed the method with
the main motivation of utilizing ensemble learning in a crime matching
process.

CONCLUSION

Customized machine learning classifiers are efficient tools for crime
matching tasks. Based on the results of this study, generally, ANN crime
classifiers family (MLPs and also RBFNs) can result in better accuracy than
other common classification methods such as C5.0, CART, Bayes net and
SVMs, in the crime matching domain. Accordingly, we proposed two
ANN-based classifiers, M2C? and ENQC2, which aim to remove restrictions
and drawbacks of existing ANN methods that applied in the domain.
M?C? was proposed to help investigators with the crime matching process
when dealing with small numbers of prolific or nonprolific offenders.
EN®C* was proposed to support decision-making in crime matching
process. Results of the study showed that M°C* outperforms other types
of classifiers, and it was capable of matching both prolific and nonprolific
offenders with an acceptable level of accuracy (92.5%). This method will be
useful for matching crimes to several local offenders who are primarily
active in a special geographical district. Contrarily, EN°C* focuses on
supporting investigators with decision making through exploiting expert
classifier outputs in a bagging ensemble approach.

Leveraging ensemble learning, EN*C” also worked well on the dataset
containing both prolific and nonprolific offenders and also presented
the averaged accuracy of 91.2%. As a result, both methods might be lever-
aged by police investigators according to their requirements, however, the
authors recommend using EN*C® whenever it is possible. Also, experi-
mental results showed that, although the popular Bayesian belief networks
have not provided the best accuracy, they are very useful as a graphical tool,
which can reveal the offender’s crime behavior signature in a comprehen-
sible format. So, the authors also recommend this kind of classifier to be
used as a complementary tool for crime pattern visualization, because other
types of classifiers are not capable of providing it.
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