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Abstract 

Data mining is  a way to extract  knowledge out of usually large data sets;  in other words it  is  an approach to discover hidden 
relationships among data by using artificial intelligence methods. The wide range of data mining applications has made it an 
important field of research. Criminology is one of the most important fields for applying data mining. Criminology is a process 
that aims to identify crime characteristics. Actually crime analysis includes exploring and detecting crimes and their relationships 
with criminals. The high volume of crime datasets and also the complexity of relationships between these kinds of data have 
made criminology an appropriate field for applying data mining techniques. Identifying crime characteristics is the first step for 
developing further analysis. The knowledge that is gained from data mining approaches is a very useful tool which can help and 
support police forces.  An approach based on data mining techniques is discussed in this paper to extract important entities from 
police narrative reports which are written in plain text. By using this approach, crime data can be automatically entered into a 
database, in law enforcement agencies. We have also applied a SOM clustering method in the scope of crime analysis and finally 
we will use the clustering results in order to perform crime matching process. 
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1. Introduction 

Undoubtedly, the circumstances of humans’ social life, makes it vital to encounter a phenomenon known as 
crime. So we always need to the knowledge of crime analysis as an efficient combating tool. Crime analysis 
basically includes leveraging a systematic approach for identifying, discovering and sometimes predicting crime 
incidents. The input of a crime analysis system is consisted of data and information assigned to crime variables and 
the output includes the answer to investigative and analytical questions, knowledge extraction and finally 
visualization of the results. The complex nature of crime and criminality-related data and also the existence of 
hidden and maybe intangible relations between them have made data mining a rapidly growing field among 
criminologists, crime investigators and crime analysts. The large volumes of crime-related data existed in police 
departments and also the complexity of relationships between these kinds of data has forced the traditional crime 
analysis methods to become obsolete. These methods require a considerable amount of time and human resources on 
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one hand and on the other hand they are not able to get all effective parameters/relationships involved due to their 
high amount of human interference. These deficiencies have revealed the necessity of using a systematic and 
intelligent approach for crime investigation more than ever. Data mining techniques can be the key solution. 

Considering the novelty of leveraging data mining techniques in the domain of crime analysis, more researches 
seem to be required in this field. Some of the key concepts of intelligent crime analysis and crime data mining 
techniques are discussed in the next sections. These techniques include data clustering and artificial neural networks. 
The former helps to categorize crimes unsupervisely and the later can be used for crime pattern recognition. Finally 
a proposed method for crime matching purposes has been covered. 

This article is consisted of 5 main sections. The second section has been devoted to a brief survey on related 
researches and existing intelligent crime analysis software utilities, which are all common in the issue of applying 
data mining techniques in the domain of crime investigation and analysis. In section 3, the basic components of 
crime analysis including the concepts of crime variables and crime matching have been covered. Section 4 presents 
a systematic approach for crime matching by means of common clustering methods, SOM and MLP neural 
networks. Finally, section 5 is devoted to conclusion and future works of the authors.

2. Related Works 

In the recent decade, a great deal of scientific researches and studies have been performed on crime data mining. 
The results are usually emerged in the aspect of new software applications for detecting and analyzing crime data. In 
[1] the authors introduce a general overview on applying intelligent crime analysis methods including neural 
networks, Bayesian networks, and genetic algorithms in predicting and matching crime incidents. In [2], neural 
networks have been applied for crime data clustering and crime data classification through using both supervised 
and unsupervised learning methods. The COPLINK national project [3-6] which was originally developed by the 
University of Arizona Artificial Intelligence Lab with funding from the National Institute of Justice represents a 
prominent framework for text mining, classification and clustering of crime data aiming to accomplish relatively 
complex crime analysis. The project contains two fundamental components: 1) COPLINK CONNECT and 2) 
COPLINK DETECT.  The former  handles  data  preprocessing  and data  gathering  burdens  and the  later  deals  with  
extracting patterns out of large volumes of crime data by using data mining and artificial intelligence. 

3. An Introduction to Intelligent Crime Analysis’ fundamentals 

Crime variables and crime matching are two main components which are usually involved in crime analysis 
process. Crime variables are so important because the analysis algorithm initially works on them. On the other hand, 
the importance of crime matching is due to its vast usage in intelligent crime detection. These two subjects are 
covered in this section as intelligent crime analysis fundamentals. 

3.1. Crime Variables 

There are some parameters which can describe crime characteristics somehow uniquely. These unique crime 
parameters known as crime variables are the main subject of crime analysis process. Regardless of crime type, we 
can categorize different types of crime variables into three general groups: 
1) Spatio-temporal crime variables (e.g. crime location coordinates or the time of occurrence) 
2) Crime natural specifications (e.g. crime scene characteristics, offender’s behavioral pattern) 
3) Offender profiles (e.g. offender specifications (age, sex, race, etc.)) 

It is notable that every crime type includes its own specific crime variables. As an example, the crime variables 
for homicide will not be the same as the crime variables for larceny. 

Table 1. crime variables for Burglary Dwelling Houses (BDH) 

Categories Related variables 

location of entry Walls, roof, window, etc. 
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method of entry Climbing, drilling, destroying, breaking, tunnel, etc. 

type of dwelling house Apartment, villa, bungalow, etc. 

type of searching tidy, untidy, all rooms, just one place, etc. 

Location of exit Walls, roof, window, etc. 

methods of offender interaction with the environment Lock the door after entering, manipulate the alarm, killing 
the watchdog, etc. 

Even in the scope of larceny crimes, there are various kinds of crime variables for different types of larceny like 
burglary, robbery, auto-theft, and so on. Therefore, different types of crimes require analyzing different kinds of 
crime variables. Table 1, lists some of the most important variables for Burglary from dwelling Houses (BDH). 

3.2. Crime Matching 

The  process  of  assigning  crimes  or  criminals  to  the  previous  solved  or  unsolved  crime  incidents  is  known  as  
crime matching. In fact, using crime matching in forensic investigations has two aspects: 
1) Assuming that one or more offenders responsible for a specific crime have been arrested. Crime matching process 
is used for assigning the previous unsolved crimes to the arrested offenders. 
2) Considering a situation that police has been warned about a new unsolved crime incident so corresponding 
criminals are not discovered yet. In such a situation, crime matching is applied to suggest some prolific offenders as 
probable suspects based on the offender profiles and the method of committing criminal act. 

Most of the offenders commit several crimes before they get arrested. When a criminal is found to be responsible 
for a specific crime instance, investigators will usually prepare a list of similar crimes by running some SQL queries 
on previous crime data in order to match instances. This traditional method of crime matching suffers from two 
main drawbacks: 1) There is no general rule for determining WHERE condition in the SQL query statement so it is 
required to perform the time-consuming task of testing multiple queries with different WHERE clauses. 2) Because 
of the natural simplicity of the queries, the result list lacks enough accuracy. In fact, crime matching process 
includes 3 main phases: 
1) Feature selection: includes extracting crime features which are effective enough to be involved in analysis 
process. In the domain of intelligent crime analysis, features are a subset of crime variables (table 1). Genetic 
algorithm, Best-First and Forward Selection algorithms considered as efficient methods of feature selection [1].   
2) Encoding: Selected features should be encoded in an appropriate way to perform the proper algorithms. 
3) Matching algorithm: The algorithms determine groups of crimes or offenders most similar to each other. Each 
algorithm works based on its own similarity measures. K-Nearest Neighbor (KNN), Tversky’s Contrast Model and 
different clustering algorithms can be utilized as matching algorithm [1]. 

In this article, a crime matching approach has been presented by utilizing Artificial Neural Network (ANN) and 
binary encoding. The approach aims to improve the accuracy and reliability of intelligent crime detection process. 

4. Proposed Method’s Components: Toward a Crime Matching Framework 

The proposed method has been represented with the purpose of utilizing data mining techniques in the domain of 
intelligent crime analysis and it includes a systematic approach for leveraging three types of data mining techniques 
as its basic components: 1) Entity Extraction as a branch of text mining, 2) crime data clustering and 3) Neural 
Network as an engine for crime matching process. 
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Fig. 1. the proposed method’s components 

These techniques will be discussed and dissected in this section. Figure (1) shows the relationships between these  
components. It is also illustrates the inner sub-components. 

4.1. Automatic Entity Extraction from Crime Narrative Reports: the First Component 

Textual crime scene reports and final narrative reports which usually exist in the data bases of crime-related 
organizations, are considered as the richest source of intelligent analysis, but unfortunately, these useful sources for 
crime data mining have no prespecified structure! In other words they are written in plain text and as a result, it is a 
super-challenging task to extract desired information out of non-structured texts. So leveraging intelligent 
techniques of text mining will be efficient for achieving this goal. One of the most common techniques in text 
mining is called Named Entity Extraction which is considered as a branch of information extraction. Named Entity 
Extraction aims to identify desired entities’ value out of a plain text [7]. Undoubtedly, in the domain of intelligent 
crime detection, these entities are crime variables. Crime entity extraction can be regarded as a data preprocess step. 

Common methods for extracting entities out of narrative reports can be categorized as 4 kinds of groups: 1) 
Lexical Lookup, 2) Rule-based, 3) Static-based and 4) Machine Learning-based methods. A lexical lookup approach 
has been used for crime entity extraction in this research. The approach constructed a lookup table which contains 
the aggregate interested words and expressions chosen by a crime domain expert. We named this lookup table as 
crime dictionary. Then, a simple search engine was developed which was able to find the dictionary’s words among 
the textual data of police narrative reports. We found this automatic approach more efficient than reading the 
narrative reports manually and entering them in a structured database which is really a time-consuming task. Using 
such an approach, we were also able to refine the output of the search engine by leveraging general words such as 
“Mr.”, “Mrs.”, “organization” and etc. 

In the process of entity extraction we faced some challenging problems which are summarized as follows: 
1) Extracting crime-related entities out of police narrative reports is naturally harder than extracting entities out of 
other kinds of texts in other problem domains. The reason is that in spite of common entities such as persons’ 
names, organizations’ names and places, which are usually seen in non-crime-related texts, there are a wider variety 
of entities such as narcotics names, crime location coordinates, vehicle models and numbers involved in the scope of 
criminology. 
2) Misspelling and grammatical mistakes are extremely common in police narrative reports. These problems make 
the process of entity extraction out of crime-related data much more complex in comparison with other reports like 
news texts. 

4.2. Crime Data Clustering 

In this section, considerations and challenges of leveraging classic hierarchical and partitioning clustering 
techniques in intelligent crime analysis has been discussed. Subsequently, a proposed approach for crime data 
clustering is represented which utilizes SOM neural network in order to overcome other clustering techniques 
drawbacks. 

The binary nature of crime behavioral variables may be regarded as a challenge, because committing clustering 
and analysis process on these types of variables requires some elegance. The binary encoding causes the popular 
Euclidian distance measure- which is commonly used for continuous types of variables- to be useless. The reason is 
that behaving binary quantities like continuous quantities can lead to misleading results in clustering process [8]. 
Some other distance functions should be leveraged which are specific for achieving the similarity between binary 
data objects. These functions calculate the dissimilarity between two objects as their corresponding distance. The 
distance (dissimilarity) between two objects can be calculated by equation (1). 

D (i , j)= 1- S (i , j)           (1) 

Where S and D correspondingly represent functions of similarity and dissimilarity between two binary sequences 
i and j. In order to calculate the similarity, assuming that both sequences are equal in length, we need to define 
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variables a, b, c and d as follows: 
a represents the number of corresponding bits with value 1 in both bit sequences. 
b represents the number of bits which equal 1 in the first bit sequence but equal 0 in the second bit sequence. 
c represents the number of bits which equal 0 in the first bit sequence but equal 1 in the second bit sequence. 
Finally, d represents the number of corresponding bits with value 0 in both bit sequences. 

Table 2. Different modes of bit comparison 

Respective variable Bit value in the first sequence Bit value in the second sequence 

a 1 1

b 1 0

c 0 1

d 0 0

According to the above definitions the similarity between bit sequences i and j can be measured by the following 
equations [9]: 

- Simple Match Coefficient:  s(i,j) = (p+s) / (p+q+r+s)

- Rao’s Coefficient:  s(i,j) = p / (p+q+r+s)

- Jaccard Coefficient: s(i,j) = p / (p+q+r)

It is also notable that popular classic -means algorithm cannot be used for clustering binary data objects. The 
reason is that, classic -means’ calculated centroids are not binary. To overcome the problem, using -medoids 
partitioning clustering method is suggested, in which one of the binary objects in a cluster represents the center of 
that cluster. Complementarily, if hierarchical clustering method is chosen in order to cluster binary data objects, it 
will be impossible to use Average-link or centrroid distance [10] methods as inter-cluster distance measuring 
strategy. Instead, we can use single-link or complete-link distance  measures  [10].  It  is  also  worthy  to  know  that  
because different types of hierarchical clustering methods have time complexity of O(n2) and O(n2logn)[11], it is not 
lucrative to use hierarchical clustering with large amount of high-dimensional crime data. 

4.3. Self-Organizing Map Neural Network:  the Second Component 

As already mentioned, high number of dimensions of crime-related data is a challenge that affects the approach 
which might be chosen for crime clustering. The approach should be able to deal with many various crime variables. 
The SOM’s ability to map the high-dimensional data spaces into low-dimensional views is the key solution to deal 
with this challenge. SOM neural network reduces the number of dimensions, while preserving the data topology [8,
12]. So statistical distribution of the network’s output will be a low-dimensional appearance of the high-dimensional 
data which are fed into the network as its input. This is considered as an elegant way for high-dimensional data 
visualization. Also There are some other useful visualization algorithms such as U-Matrix [13] and Component 
Planes [14,15] which are not the subject of this paper. Moreover, one of the most significant advantages of using 
SOM neural networks is their natural tendency to be leveraged in parallel processing and distributed architectures. 
As a result, the method seems to be efficient in facing with large volumes of crime-related data. It is also applicable 
in dealing with data with non-linear statistical distributions [8]. Consequently, due to the non-linear distribution of 
criminal data it is suggested to exploit SOM abilities in this field. 

The proposed method of crime data clustering which was used in this research included a two-step approach; in 
the first step a self organizing neural network was used to extract the feature map, subsequently, -means popular 
clustering algorithm categorized the network output as the second step. But what was the exploited neural network 
architecture? The input layer was consisted of 21 crime variables encoded as binary digits which were obtained by 
feature extraction process. The output layer was consisted of a 2-D 25×25 array of neurons. Each neuron in the 
output layer was related to all of the neurons in the input layer through weighted connections. The SOM neural 
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network algorithm was initialized by random connection weights. We trained the network by sending some 
predetermined binary individuals into the input layer. In each iteration of the training process the weights are 
readjusted. Eventually, after the training process ends, the weights of the output layer mimic the real high-
dimensional data distribution. 

How does the training process works? Feeding the train data into the network, the network computes the 
similarity between the input data and all of the neurons of the output layer. An output layer neuron which is the most 
similar one to the input data is determined as the winner neuron. Sending the input data into the network, the 
distance of the output layer neurons and the input data is computed. Subsequently, the winner’s weight and also 
some of its neighbors are readjusted according to the value of neighborhood function.  It  is worthy to note that the 
value of (v) will be decreased gradually through the training process till it is limited only to the winner neuron. 
Equation (5) shows how the weights are readjusted in a SOM neural network. 

Wv + = Wv - + (v) ×  × (X – Wv -)  (5) 

In which Wv
- represents the current weight for the neuron v, (v) is the neighborhood function which was 

discussed above, X represents the input data and  is the learning coefficient which is decreased in value through 
training process and Wv

+ is the readjusted weight of neuron v that assigned to the corresponding neuron. When the 
training step is finished and the data map is generated by the SOM neural network, the second stage starts. This step 
performs a partitional (e.g. k-means) or a hierarchical (e.g. AGNES or DIANA) clustering algorithm on the SOM 
generated map. It means that neurons of the output layer (SOM lattice) which have the closest weights to each other 
are grouped as a cluster. These clusters are used for further analysis (i.e. crime matching which is discussed in the 
next section). We used the AGNES algorithm [8] for the second stage, which is a hierarchical bottom-up clustering 
algorithm.  AGNES  was  chosen  because  it’s  a  simple  but  an  accurate  method.  It  should  be  minded  that  AGNES  
suffers from high time and space complexity (O(n3)). To alleviate this problem, it is possible to use k-means 
algorithm which has a very low time complexity (O(n)). In this way, we also have the choice to exploit the SOM’s 
output (graphical map) for estimating the optimum number of clusters and also the initialization seeds in order to 
avoid random initialization in k-means algorithm. 

4.4. Proposed Crime Matching engine: Crime Classifier Component 

Undoubtedly, crime matching is one of the most important requirements in analyzing and investigating crimes. It 
aims to match crimes to criminals and vice versa. As already mentioned, there are 2 practical modes for crime 
matching: 1. A new crime incident is occurred and the goal is to identify the probable offenders responsible for the 
corresponding crime incident, and 2. an offender is arrested and the investigative aims to assign some unsolved 
similar crime instances to the current offender. This research mainly focuses on using crime matching with 
behavioral burglary crime variables. Burglary crime variables were categorized into 4 groups: 1. Burglary location 
types, 2. the ways that the offender interacts with crime environment, 3. types of entry method and 4. the tools and 
instruments that the offender has used. For the sake of clarity, table (3) shows a condensed list of crime variables for 
type of entry method which are binary encoded. 

Table (3).  modus operandi for entry methods in a specific crime instance 

Entry Methods Binary encoded value 

Front Door 0

Rear Door 0

Window 1

Breaking the Window 1

Climb 1

Damage Locks 0

Terrace  1
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Neighbor’s Houses 0

In fact, the method which the offender has used to enter the premise is encoded in the form of a relatively unique 
binary modus operandi for a specific burglary incident. As an example, the binary string respective to the entry 
method in the burglary instance shown in table (3) is “00111010”. This way of encoding, provides the crime 
matching utilization. In order to match crimes in the first application mode (i.e. after detecting the new unsolved 
burglary), the investigative usually prepare a narrative report for the crime, and the report will be fed into the 
automatic entity extraction component for extracting the respective burglary incident’s features. Subsequently, the 
encoded binary string of mentioned crime will be generated and finally the crime matching engine calculates the 
similarity of the new unsolved crime to the clustered solved burglary instances (clustering engine was discussed in 
section 4-2 and 4-3.).   Based on the similarity of the new crime to the crimes resident in determined clusters, the 
respective probable offenders will be identified. Contrarily, in order to match crimes in the second application mode 
(i.e. when an offender is arrested for a specific burglary), we will send the bit strings of all of his/her burglaries to 
the crime matching engine in order to find the similar unsolved burglaries to the offender’s recent known burglaries. 
This way, we will be able to probably assign the unsolved burglaries to the arrested offenders. These kinds of 
information can help investigative to have more efficient interviews with the arrested offender. 

But how does the crime matching engine work? It  uses  a  classification process by means of a Multi-Layer 
Perceptron (MLP) neural network with back-propagation training method [16]. One of the most significant benefits 
of leveraging an MLP classifier is its high ability to tolerate noisy data instances beside the ability to be used in 
parallel data processing. We devise a MLP neural network for each category of burglary crime variables including 
burglary location types, the type of the offender interactions with crime environment, types of entry method and the 
tools used by the offender. The topology of MLP contains 3 layers of neurons (i.e. input output and one hidden 
layer). It can be proved that having just one hidden layer in the neural network’s architecture is sufficient to 
approximate any linear or non-linear function [17]. The number of neurons in input layer was designed to be equal 
to the number of crime variables involved in analysis. For example, the devised neural network for types of entry 
method should contain 8 neurons in the input layer (one neuron for every feature showed in table (3)). The number 
of output layer neurons was devised to be equal to the number of clusters which were determined by crime data 
clustering component (section 4-3). It is notable that there is no general rule for estimate the optimum number of 
neurons of the hidden layer of the network in design time, but it is somehow practically proved in [18] that the MLP 
networks will be more efficient if the number of the hidden layer neurons is chosen according to equation (6). 

anpnm (6)

Where m is the suggested number of hidden layer neurons, np and na represent the number of input and output 
layer neurons respectively and finally  is a coefficient which was set to be 4 based on some try-and-error 
experiments. Learning process commences with random assignment of weights to the connections between neurons. 
Subsequently, the train input vectors (input data which we already know what cluster they belong to) are sent to the 
network. A target bit string introduce to the network for each train input data. This target string was set to have 0 for 
all of its bit values except the one that represents the respective cluster. For example, assume a network that has just 
3 neurons in its output layer (i.e. 3 cluster has been obtained in the clustering phase which was discussed in section 
4-3). Also assume that a train input vector belongs to cluster number 2, So the target bit string will be “010”. 

                                                                             Fig. 2. Interpreting the MLP’s output 
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Anyway, the network attempts to readjust the weights according to the given input-target pairs. After the training 
process,  the  network  will  be  able  to  classify  the  test  data  and generates  a  bit  sequence  as  its  output  (e.g.  “010”).  
Figure (2) shows how did we interpret the MLP’s generated output as a bit string. 

5. Conclusion and Future Works 

In this research some of the most significant capabilities of data mining techniques were leveraged through a 
multi-purpose framework for intelligent crime investigation. The framework exploited a systematic approach for 
using SOM and MLP neural networks for clustering and classifying crime data. Considerations and challenges of 
using hierarchical/partitional clustering techniques in crime data clustering were also discussed. We hope we can 
make crime spatio-temporal data involved in the analysis besides behavioral crime variables. We also intend to 
implement this framework as an integrated enterprise software. 
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